Math 255A' Lecture 21 Notes

Daniel Raban

November 18, 2019

1 Continuous Functional Calculus for Self-Adjoint Operators

1.1 Idea for proving the general spectral theorem for self-adjoint operators

Theorem 1.1. Let T be a self-adjoint operator on H with

$$a = \inf_{\|x\|=1} \langle Tx, x \rangle, \qquad b = \sup_{\|x\|=1} \langle Tx, x \rangle.$$

Then there exists a spectral family $(E(\lambda))_{\lambda \in \mathbb{R}}$ such that

$$T = \int_{\mathbb{R}} \lambda \, dE(\lambda).$$

This means $\langle Tx, y \rangle = \int_{[a,b]} \lambda \, d\mu_{x,y}$ for all $x, y \in H$, where $\mu_{x,y}$ is the Lebesgue-Stieltjes measure corresponding to $F_{x,y}(\lambda) = \langle E(\lambda), x, y \rangle$.

Method: Consider the map $\mathbb{R}[x] \to \mathcal{B}(H)$ sending $p(t) = \sum_{i=1}^{n} c_i t^i \mapsto \sum_{i=1}^{n} c_i T^i$.

Remark 1.1. This is a homomorphism of algebras over \mathbb{R} .

The idea is to enrich the domain of this homomorphism to produce many more operators out of T. Why is this relevant? Suppose

$$T = \sum_{i=1}^{N} \lambda_i E(\lambda_{i-1}, \lambda_i)$$

like in the finite case. Then

$$T^2 = \sum_{i=1}^N \lambda_i^2 E(\lambda_{i-1}, \lambda_i).$$

This generalizes to any polynomial of T. Assume we can do this for the functions $p(t) = \mathbb{1}_{(-\infty,\mu]}(t)$. Then

$$p(T) = \int_{a}^{\mu} p(\lambda) \, dE(\lambda) = E(\mu)$$

So this should tell us what $E(\mu)$ is. The proof of the spectral theorem is basically this idea in reverse.

1.2 Continuous functional calculus

When we extend our functional calculus to non-polynomial functions, we only really care what the functions only do on the spectrum of T. In particular, the function p(T) should only depend on the values of p in [a, b], where a, b are as above.

Our next goal is to show that if $p \in R[t]$ and $c \leq p(t) \leq d$ for all $t \in [a, b]$, then $cI \leq p(T) \leq dI$. It is enough to show one side of the inequality, and so it is enough to show it when c = 0. So we will show that if $p|_{[a,b]} \geq 0$, then $p(T) \geq 0$.

Lemma 1.1 (sum of squares decomposition). If $p \in \mathbb{R}[t]$ and $p \geq 0$, then there exist $q_1, \ldots, q_m \in \mathbb{R}[t]$ such that $p(t) = \sum_{i=1}^m q_i(t)^2$.

Remark 1.2. This can actually be shown for m = 2.

Proof. Let $p(t) = \sum_{i=0}^{n} c_i t^i$. If n = 0, we are done. Suppose $n \ge 1$ and $p \ge 0$. Then n is even, and $c_n > 0$. Then there exists some $u \in \mathbb{R}$ such that $p(u) = \min p(\mathbb{R}) =: c$. Let $p_1(t) := p(t) - c$. Then $p_1 \ge 0$, and $p_1(0) = 0$. This implies that $(t - u)^2$ divides p in $\mathbb{R}[t]$. so $p_1(t) = (t - u)^2 p_2(t)$. Since p_2 is continuous, $p_2 \ge 0$ with deg $p_2 = n - 2$. By induction, $p_2(t) = \sum_j q_j(t)^2$, and we get

$$p(t) = \sum_{j} ((t - u)q_j(t))^2 + (\sqrt{c})^2.$$

Proposition 1.1. Let T be self-adjoint. If $p|_{[a,b]} \ge 0$, then $p(T) \ge 0$.

Proof. Step 1: Assume $p \ge 0$. Then $p(t) = \sum_j q_j(t)^2$, so $p(T) = \sum_j (q_j(T))^2$, which is a sum of positive operators: $\langle (q(T))^2 x, x \rangle = ||q(T)x||^2$.

Step 2: Assume a = -1, b = 1, so $p|_{[-1,1]} \ge 0$. Let $\varepsilon > 0$, and choose $\delta > 0$ such that $(p + \varepsilon)|_{[-(1+\delta),1+\delta]} \ge 0$. Define $p_n(t) = p(t) = \varepsilon + (\frac{t}{1+\delta})^{2n}$. Then $p_n \ge 0$ for all sufficiently large n. So by case 1, $p_n(T) \ge 0$ for all sufficiently large n. But

$$\|(p+\varepsilon)(T) - p_n(T)\| = \left\|\left(\frac{T}{1+\delta}\right)^n\right\| \le \frac{\|T\|^n}{(1+\delta)^n} = \frac{1}{(1+\delta)^n} \to 0.$$

So $p_n(T) \xrightarrow{op} (p + \varepsilon)(T)$, which makes $(p + \varepsilon)(T) \ge 0$. Then $p(T) \ge 0$.

So $p \mapsto p(T)$ satisfies $||p(T)||_{op} \leq ||p|_{[a,b]}||_{sup}$. So if $f \in C([a,b])$, define $f(T) = \lim_{n \to \infty} p_n(T)$. Then for all $p_n \in \mathbb{R}[t]$ such that $p_n \to f$ uniformly on [a,b] this is well-defined. So $f \mapsto f(T)$ is still a homomorphism: If $p_n \to f$ and $q_n \to g$ in C([a,b]), then $p_nq_n \to fg$ in C([a,b]). Therefore,

$$(fg)(t) = \lim_{n} (p_n q_n)(T) = \lim_{n} p_n(T)q_n(T) = f(T)g(T).$$

This gives us a well-defined functional calculus for continuous functions.

1.3 Weak operator limits of positive functions

Definition 1.1. If $\langle T_n \rangle \in \mathcal{B}(H)$ and $T \in \mathcal{B}(H)$, $T_n \to T$ in the weak operator topology if $\langle T_n x, y \rangle \to \langle Tx, y \rangle$.

Remark 1.3. We could also define the **strong operator topology** by $T_n x \to T x$ for all $x \in H$.

Proposition 1.2. Suppose $\langle T_n \rangle_n \in \mathcal{B}(H)$ with $T_n \geq 0$ and $T_n \geq T_{n+1}$ for all n. Then there exists a positive $T \in \mathcal{B}(H)$ such that $T_n \xrightarrow{WOT} T$.

Remark 1.4. We actually get SOT convergence here, but the proof is a bit harder.

Proof. For all $x \in H$, $\langle T_n x, x \rangle$ must converge to some $Q(x, x) \geq 0$. FOr all x, y we get

$$\langle T_n x, y \rangle = \frac{1}{2} (\langle T_n(x+y), x+y \rangle - \langle T_n x, x \rangle - \langle T_n y, y \rangle)$$

$$\rightarrow \frac{1}{2} (Q(x+y, x+y) - Q(x, x) - Q(y, y))$$

$$=: Q(x, y).$$

Check that $(x, y) \mapsto Q(x, y)$ is symmetric, bilinear, positive, and $Q(x, x) \leq M ||x||^2$ for some M.

So for each x, the map $Q(x, \cdot) \in H^* = H$ and is bounded: $||Q(x, \cdot)|| \leq M ||x||$. By Riesz representation, there exists some $Tx \in H$ such that $Q(x, y) = \langle Tx, y \rangle$ for all x, y. Check that $T \in \mathcal{B}(H)$ is self-adjoint with $T \geq 0$.

The idea for the next step is to let $\langle f_n \rangle_n \in C([a, b])$ be bounded below with $f_n \downarrow g$ (possible e.g. if $g = \mathbb{1}_{(-\infty,\mu]}$). Then if $f_n \geq f$ in $C([a, b], f_n(T) \geq f_{n+1}(T)$ in $\mathcal{B}(H)$. We will define g(T) as the WOT limit of the $f_n(T)$.